On to the next of the topics I’m uncovering as I delve further into the world of LDraw!
I was building a Technic model and discovered that one of my beams didn’t quite fit onto the pins it’s supposed to—it needed to be “stretched” just a bit (as is common with Technic models with odd angles and connections). I compared my model to another user’s, and I noticed that in his, the beam fit correctly even though all the geometry was the same in both models. I discovered that he had scaled some of the values in the matrix; I copied those values to my beam, and it worked!
So the question simply is, when this situation arises, how do I determine which values to scale in the matrix? Typically I’ll just need to make a part longer or shorter or taller by a small fraction. Can I do this interactively in LDCad, or do I just calculate scale factors based on the distance I need (and how do I know which boxes are the correct ones to change)?
I was building a Technic model and discovered that one of my beams didn’t quite fit onto the pins it’s supposed to—it needed to be “stretched” just a bit (as is common with Technic models with odd angles and connections). I compared my model to another user’s, and I noticed that in his, the beam fit correctly even though all the geometry was the same in both models. I discovered that he had scaled some of the values in the matrix; I copied those values to my beam, and it worked!
So the question simply is, when this situation arises, how do I determine which values to scale in the matrix? Typically I’ll just need to make a part longer or shorter or taller by a small fraction. Can I do this interactively in LDCad, or do I just calculate scale factors based on the distance I need (and how do I know which boxes are the correct ones to change)?

(I was caught by this one while preparing this tutorial!)

Turns out, my third side needs to be 121.6625; it's currently 120, so that's a scale factor of 1.01379. Enter that into the X matrix, use Selection Info to get the new rotation value (because I changed the ratio of my triangle sides, therefore the angles changed as well), apply that to the assembly—now it fits!
I was actually stumped, but for some reason posting these puzzlers here helps me think them through…and maybe will help someone else later on. And it's worth noting that, as usual, my answer lies in the fact that you can solve any triangle if you know at least one side, plus any other 2 of the sides or angles.